Dataset: Water chemistry during mesocosm study of trophic interactions under ocean acidification in Bodega Bay, CA.

ValidatedFinal no updates expectedDOI: 10.26008/1912/bco-dmo.869110.1Version 1 (2022-03-09)Dataset Type:experimental

Principal Investigator: Brian Gaylord (University of California - Davis: Bodega Marine Laboratory)

Student, Contact: Brittany Jellison (University of New Hampshire)

BCO-DMO Data Manager: Taylor Heyl (Woods Hole Oceanographic Institution)

BCO-DMO Data Manager: Shannon Rauch (Woods Hole Oceanographic Institution)


Project: Trophic consequences of ocean acidification: Intertidal sea star predators and their grazer prey (BOAR Trophic)


Abstract

This dataset provides water chemistry data during a mesocosm study of trophic interactions among intertidal sea stars (Leptasterias hexactis), snails (Tegula funebralis), and macroalgae (Mazzaella flaccida) under ocean acidification in Bodega Bay, CA.

This dataset is part of a larger experiment to investigate how pH influences trophic links between intertidal sea stars (Leptasterias hexactis), snails (Tegula funebralis), and macroalgae (Mazzaella flaccida). Organisms were placed for 7 days in mesocosms containing seawater at either ambient (~7.9) or low pH (~7.0). The pH was modified using equimolar additions of sodium bicarbonate (NaHCO3) and hydrochloric acid (HCl). The water in each container was changed daily. The mesocosm array consisted of 40, 13-liter (L) circular plastic containers with a mesh barrier down the center to separate predator, prey, and/or basal resource but allowing for passage of waterborne cue. Mesocosms were filled halfway with seawater, allowing 10 centimeter (cm) of refuge space for snails above the waterline. Mesocosms were held within a seawater table under constant flow to maintain consistent temperatures.

Temperature, salinity, dissolved oxygen, and pH were measured using a YSI ProPlus Sensor.

Total pH was measured using a Sunburst SAMI spectrophotometric unit modified for benchtop use.

Total alkalinity was measured via Gran titration (Riebesell et al. 2010) standardized using certified reference material (A. Dickson, Scripps Institution of Oceanography) using a Metrohm 855 autotitrator.

Values of total pH for each container were measured using a YSI ProPlus Sensor and calibrated to the total scale using daily samples run on a Sunburst SAMI spectrophotometric unit modified for benchtop use.


Related Datasets

IsRelatedTo

Dataset: Mesocosm study: sea star behavior
Jellison, B., Gaylord, B. (2022) Mesocosm study of trophic interactions under ocean acidification, focusing on sea star behavior in Bodega Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-16 doi:10.26008/1912/bco-dmo.866365.1
IsRelatedTo

Dataset: Mesocosm study: snail behavior
Jellison, B., Gaylord, B. (2022) Mesocosm study of trophic interactions under ocean acidification, focusing on snail responses Bodega Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-09 doi:10.26008/1912/bco-dmo.869148.1
IsRelatedTo

Dataset: Mesocosm study: algae eaten
Jellison, B., Gaylord, B. (2022) Mesocosm study of trophic interactions under ocean acidification, focusing on the consumption of algae by snails in Bodega Bay, California. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-09 doi:10.26008/1912/bco-dmo.866359.1
IsRelatedTo

Dataset: Mesocosm study: snails eaten
Jellison, B., Gaylord, B. (2022) Mesocosm study of trophic interactions under ocean acidification, focusing on the consumption of snails by sea stars in Bodega Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-09 doi:10.26008/1912/bco-dmo.869189.1

Related Publications

Results

Jellison, B. M., & Gaylord, B. (2019). Shifts in seawater chemistry disrupt trophic links within a simple shoreline food web. Oecologia, 190(4), 955–967. doi:10.1007/s00442-019-04459-0
Software

R Core Team (n.d.) R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria).