Dataset: Bottle sample TA, pH, and DIC collected during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016

ValidatedFinal no updates expectedDOI: 10.26008/1912/bco-dmo.870368.1Version 1 (2022-03-01)Dataset Type:experimentalDataset Type:Other Field Results

Principal Investigator: Michael DeGrandpre (University of Montana)

Co-Principal Investigator: Todd R. Martz (University of California-San Diego Scripps)

Student, Contact: Qipei Shangguan (University of Montana)

BCO-DMO Data Manager: Amber D. York (Woods Hole Oceanographic Institution)


Project: A new tool for ocean carbon cycle and ocean acidification studies (Bermuda Biochem Timeseries)


Abstract

This dataset contains total alkalinity (TA), pH, and dissolved inorganic carbon (DIC) from bottle samples collected 3 to 4 times a day. These data were part of an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in August of 2016. These data were published in Shangguan et al. (2022).

Bottle samples are analyzed following descriptions:
The pH samples were analyzed by spectrophotometry immediately after collection using purified mCP. The AT and DIC samples were poisoned and stored following standard protocol (Dickson et al., 2007), and were analyzed within three days using CRMs for quality assurance (Batch 156; see Dickson et al., 2003). AT was determined by open-cell potentiometric titration (Gran, 1952) and a nonlinear least squares approach (Dickson et al., 2007). DIC was determined by acidifying samples and quantifying the extracted CO2 gas by infrared detection (Goyet and Snover, 1993).


Related Datasets

IsRelatedTo

Dataset: Inter-comparison 2016: SAMI-CO2 pCO2
Relationship Description: Data from different sensors in the same inter-comparison study of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions.
Shangguan, Q., DeGrandpre, M., Martz, T. R. (2022) A pCO2 time series from a SAMI-CO2 instrument during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-01 doi:10.26008/1912/bco-dmo.870390.1
IsRelatedTo

Dataset: Inter-comparison 2016: SuperCO2 pCO2
Relationship Description: Data from different sensors in the same inter-comparison study of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions.
Shangguan, Q., DeGrandpre, M., Martz, T. R. (2022) A pCO2 time series from a SuperCO2 benchtop instrument during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-01 doi:10.26008/1912/bco-dmo.870401.1
IsRelatedTo

Dataset: Inter-comparison 2016: MicroCAT CTD temperature salinity
Relationship Description: Data from different sensors in the same inter-comparison study of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions.
Shangguan, Q., DeGrandpre, M., Martz, T. R. (2022) Temperature and salinity by a MicroCAT CTD during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-01 doi:10.26008/1912/bco-dmo.870412.1
IsRelatedTo

Dataset: Inter-comparison 2016: SAMI-alk TA
Relationship Description: Data from different sensors in the same inter-comparison study of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions.
Shangguan, Q., DeGrandpre, M., Martz, T. R. (2022) Total alkalinity from SAMI-alks during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-01 doi:10.26008/1912/bco-dmo.870352.1
IsRelatedTo

Dataset: Inter-comparison 2016: SAMI-pH and SeapHOx pH
Relationship Description: Data from different sensors in the same inter-comparison study of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions.
Shangguan, Q., DeGrandpre, M., Martz, T. R. (2022) pH time-series from SAMI-pH and SeapHOx instruments during an inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions at Scripps Institution of Oceanography in 2016. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2022-03-01 doi:10.26008/1912/bco-dmo.870379.1

Related Publications

Results

Shangguan, Q., Prody, A., Wirth, T. S., Briggs, E. M., Martz, T. R., & DeGrandpre, M. D. (2022). An inter-comparison of autonomous in situ instruments for ocean CO2 measurements under laboratory-controlled conditions. Marine Chemistry, 240, 104085. https://doi.org/10.1016/j.marchem.2022.104085
Methods

Dickson, A. G., Afghan, J. D., & Anderson, G. C. (2003). Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Marine Chemistry, 80(2), 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0
Methods

Dickson, A.G.; Sabine, C.L. and Christian, J.R. (eds) (2007) Guide to best practices for ocean CO2 measurement. Sidney, British Columbia, North Pacific Marine Science Organization, 191pp. (PICES Special Publication 3; IOCCP Report 8). DOI: https://doi.org/10.25607/OBP-1342
Methods

Goyet, C., & Snover, A. K. (1993). High-accuracy measurements of total dissolved inorganic carbon in the ocean: comparison of alternate detection methods. Marine Chemistry, 44(2–4), 235–242. https://doi.org/10.1016/0304-4203(93)90205-3
Methods

Gran, G. (1952). Determination of the equivalence point in potentiometric titrations. Part II. The Analyst, 77(920), 661. doi:10.1039/an9527700661