Bloom-forming jellyfish are increasing in number, frequency and magnitude, in part due to anthropogenic impacts, underscoring a need for enhanced understanding of trophic exchanges in jellyfish-dominated ecosystems. Interactions between jellyfish and their prey are driven by morphology, behavior, and unique fluid signatures that result in species-specific prey selection patterns. Fluid signatures generated by predators entrain prey, and motile prey organisms have evolved to sense and respond to these stereotyped fluid signatures. The shape and coherence of these unique fluid signatures are strongly mediated by turbulence, which is ubiquitous in the ocean. Yet, the effects of turbulence are almost always neglected in feeding studies. This three-year project will investigate the influence of turbulence on predator-prey interactions using a suite of cnidarian hydromedusae with unique morphologies, fluid signatures and prey selection patterns collected in the region of Friday Harbor Laboratory, WA.
This project seeks to establish a detailed, mechanistic understanding of the effects of turbulence on organism-scale predator-prey interactions using gelatinous zooplankton predators with contrasting predation modes. The PI will investigate prey selection under varying levels of turbulence by studying swimming behavior, wake structure, and predator-prey interactions in a laboratory turbulence generator designed for fragile plankton. The PI will also make in situ measurements of turbulence and observations of organism behavior using a Self-contained Underwater Velocimetry Apparatus (SCUVA). This is a fully submersible instrument for flow visualization, and its use will provide a cross-calibration of field and laboratory rates and behaviors. The influence of turbulence on trophic position among the different species of hydromedusae will be quantified through field studies of prey selection patterns. The proposed comparative approach using species with distinct predation modes will provide insights applicable to other planktonic predators that can be similarly grouped.
Principal Investigator: Kelly Rakow Sutherland
University of Oregon (OIMB)
Contact: Kelly Rakow Sutherland
University of Oregon (OIMB)
DMP_OCE-1155084_Sutherland.pdf (36.61 KB)
03/18/2015