NSF Abstract:
Sponges are bottom-dwelling animals that dominate Caribbean reefs now that reef-building corals have been declining for decades. Sponges feed by filtering huge volumes of seawater, providing a mechanism for recycling organic material back to the reef. A new theory has been proposed called the "sponge-loop hypothesis" that is potentially the most important new concept in marine ecology in many years, because it seeks to explain Darwin's Paradox: how do highly productive and diverse coral reefs grow in desert-like tropical seas? The sponge loop hypothesis proposes that sponges on coral reefs absorb the large quantities of dissolved organic carbon (molecules such as carbohydrates) that are released by seaweeds and corals and return it to the reef as particles in the form of living and dead cells, or other cellular debris. This project will use a rigorous set of techniques to test the sponge-loop hypothesis in the field on ten of the largest and most common sponges on Caribbean reefs. For each species, the contributions of particles and dissolved organic carbon to sponge nutrition will be measured, as well as the production of cellular particles in the seawater flowing out of the sponge. For selected sponge species, the concentration of dissolved organic carbon entering the sponge will be experimentally enhanced to determine the capacity of the sponge to absorb this potential food source, and to gauge its effect on the production of cellular particles. This project will provide STEM education and training for postdoctoral, graduate and undergraduate students and public outreach in the form of easily accessible educational videos. Further, this project is important for understanding the carbon cycle on coral reefs where the effects of climate change and ocean acidification may be tipping the competitive balance toward non-reef-building organisms, such as sponges.
The cycling of carbon from the water-column to the benthos is central to marine ecosystem function; for coral reefs, this process begins with photosynthesis by seaweeds and coral symbionts, which then exude a substantial portion of fixed carbon as dissolved organic carbon (DOC) that may be lost to currents and tides. But if sponges, with their enormous water filtering capacity, can return DOC from the water column to the reef, it would represent a major unrecognized source of carbon cycling. The "sponge-loop hypothesis" has the potential to transform our understanding of carbon cycling on coral reefs. Building on preliminary data from studies of the giant barrel sponge, this project will investigate each of the three components of the sponge-loop hypothesis for ten common barrel, vase and tube-forming species that span a range of associations with microbial symbionts, from high microbial abundance (HMA) to low microbial abundance (LMA) in the sponge tissue. Specifically, the experimental approach will include InEx techniques (comparative sampling of seawater immediately before and after passage through the sponge), velocimetry, and flow cytometry to determine whether each species consumes DOC and produces particulate organic carbon (POC) in the form of cellular detritus. Then, for species that consume DOC, the same techniques will be used in manipulative experiments that augment the amount of DOC from three categories (labile, semi-labile and refractory) to determine the types of DOC consumed by sponges. In addition to testing the sponge-loop hypothesis, this project will use molecular techniques to investigate the differences among HMA and LMA sponge species, targeting the microbial symbionts that may be responsible for DOC uptake.
Dataset | Latest Version Date | Current State |
---|---|---|
Microbial Symbionts, Carbon, and Nutrient Cycling in Caribbean Coral Reef Sponges from Conch Reef, Key Largo (Florida, USA) and Carrie Bow Cay (Belize) in June and July 2016 | 2022-07-11 | Final no updates expected |
Flux of organic carbon for sponges at Conch Reef, Key Largo, FL, and Carrie Bow Cay, Belize as sampled in 2016. | 2021-02-15 | Final with updates expected |
Carbon flux for the Caribbean giant barrel sponge Xestospongia muta (Sponge-loop) | 2017-03-27 | Final no updates expected |
Principal Investigator: Christopher Finelli
University of North Carolina - Wilmington (UNC-Wilmington)
Co-Principal Investigator: Patrick M. Erwin
University of North Carolina - Wilmington (UNC-Wilmington)
Co-Principal Investigator: Joseph Pawlik
University of North Carolina - Wilmington (UNC-Wilmington)
Contact: Christopher Finelli
University of North Carolina - Wilmington (UNC-Wilmington)
Data Management plan for award OCE-1558580 (20.09 KB)
01/24/2017